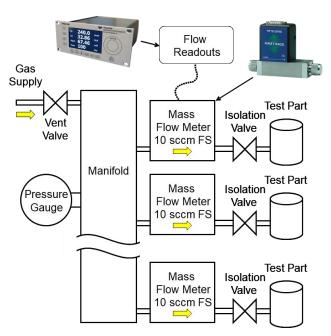


High Throughput Leak Detection

Page | 1

How Can You Improve Leak Testing Precision and Throughput?

Various methods have historically been used to check leaks in systems and components - from bubble tests, to rotameters and pressure-loss detection. While these traditional methods have their place, each has significant drawbacks in accuracy, throughput and automation. You may be faced with more demanding situations that call for more effective techniques. This note outlines a method that can quickly detect and accurately measure leaks at controlled differential pressures. Furthermore, it enables automation (including data capture) and cycle-time efficiency.


Objectives

- Test for and precisely measure leaks in a range from 0.1 sccm to 100 sccm with controlled pressure from 15 to 200 psig.
- Reduce the testing time from minutes to seconds.

Method

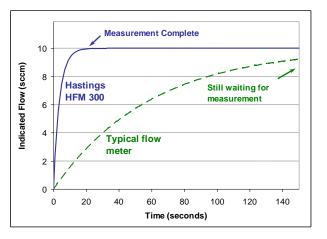
A typical leak test stand is shown in Figure 1. This arrangement has a pressure controlled manifold outfitted with one or more test stations. Multiple stations allow parallel testing to improve throughput. At the start of the test, the pressure is at a constant elevated level throughout the manifold and the test part. When a part begins to leak, a pressure differential develops across the flow meter between the part and the manifold. While this differential allows the flow meter to measure, it also causes a delay in making an accurate measurement while the system re-establishes a steady-state pressure condition. The larger the meter's pressure drop, the longer it takes to reach a steady flow. For typical applications using a standard flow meter, this can take several minutes as the signal gradually approaches the correct flow. The tubing downstream of the flow meter also contributes to this delay and therefore should be as short as possible. Minimizing tubing length also improves reading stability by reducing thermally generated flows in the tubing.

Figure 1 Typical Leak Check Stand

In addition to the delay, the pressure differential across the flow meter creates an uncertainty in the actual test part pressure. This problem is made worse by the fact that the uncertainty is greater for larger leaks. For these reasons, it is essential to use a flow meter designed to operate with a very low pressure differential.

Sales/Support: 800-950-2468 • Main: 757-723-6531 804 Newcombe Ave. Hampton, VA 23669 http://www.teledyne-hi.com/

Instrumentation Choice


The recommended mass flow meter is the Hastings HFM-300 or HFM-D-300B Vue with Optional Color Touchscreen Display. The HFM-300 is chosen for its ability to accurately measure flow to within 0.75% of Full Scale while operating with extremely low pressure differential. Whereas typical mass flow meters require 4 in H₂O pressure differential to operate, the HFM-300 only requires 0.25 in H₂O. For your leak test, 16 times less pressure differential means 16 times faster! This is demonstrated in the actual test case below (Figure 3).

Another important consideration when selecting the proper instrument is avoiding what is known as "fold-over". This problem arises in some typical flow meters when they actually misreport a very high (over-range) flow as a normal flow, and allow a bad part to pass. Teledyne Hasting's 300 Series sensor design correctly interprets over-range flows; its output signal will not come back on scale. The HFM-300 will not report false acceptable readings. Figure 2 HFM-D-300B Vue Flow Meter w/ Color Touchscreen Display Accuracy: ±(0.5%PT+0.2%FS)

Table I Test Case Test Parameters	
Flow Meter Full Scale Range	10 sccm
Volume of Test Part	1 Liter Plus Volume of Tubing Downstream of the Flow Meter
Leak Rate	10 sccm
Pressure Differential of HFM-300	0.25 in H ₂ O
Pressure Differential of Typical Mass Flow Meter	4 in H ₂ O

By using the HFM-300, the time to accurately measure the leak rate (to within 2% of the final value) has been reduced from over 4 minutes to just 16 seconds.

For Information on all Teledyne Hastings Vacuum Measurement and Mass Flow Instruments, visit our website:

www.teledyne-hi.com or contact us at +1-757-723-6531